ACHIEVING 0.02 G/BHP-HR NO_X EMISSIONS FROM A HEAVY-DUTY STOICHIOMETRIC NATURAL GAS ENGINE EQUIPPED WITH THREE-WAY CATALYST

Ian Smith, Thomas Briggs, and Christopher Sharp Southwest Research Institute

Motivation

- With the growth in population across the United States ozone nonattainment areas continue to grow
 - Continued tightening of ozone standard
- 2015 EPA rulemaking changed NAAQS for ozone to 70 ppb

CARB Inventory shows on-road heavy-duty trucks are

~20% of all NO_x emissions

The 0.20 g/bhp-hr NO_X standard still isn't enough...

NO_x Emission Goals: Reduction and Efficiency

Two main goals:

- Achieve 0.02 g/bhp-hr NO_X emissions over the U.S. Heavy-Duty FTP, RMC-SET and the European WHTC
- Minimize the impact to GHG emissions
 - Provide the pathway towards meeting Phase 2 GHG standards

Secondary objectives:

 Observe the emissions over the CARB extended idle test as well as 3 low-load vocational cycles

3

Test Engine

2014 model year Cummins ISX12-G engine certified to 2010 U.S. Heavy-Duty emissions standards

238 kW @ 1800 RPM // 1559 Nm @ 1200 RPM

High-pressure loop, cooled EGR

Stoichiometric – single-point, upstream fueling

Three-way catalyst

Bus application

Baseline Emissions

The engine was tested over various cycles to examine emissions and find improvement areas

- Certification cycles
 - US Heavy-Duty FTP
 - US Heavy-Duty RMC-SET

Baseline Emissions: Certification Cycles

Looking at the emissions gives insight into areas of improvement

- Cold-start NO_X emissions
 - Catalyst light-off
 - Open-loop fueling
- Hot-start NO_X emissions
 - AFR control

- RMC-SET
 - NH₃ emissions
 - Slightly rich AFR set-point

Engine Hardware Improvements

The baseline engine was upgraded with new hardware and engine control unit/calibration to achieve the 0.02 g/bhp-hr NO_X emission target

	ISLG FTP NO _X Blowby Emissions (g/bhp-hr)			
Cold Start	0.044			
Hot Start	0.008			
Composite	0.013			

Engine Hardware Improvements

Additional hardware was added to increase the EGR tolerance and transient performance of the engine

- EGR Tolerance
 - Baseline: Capacitive discharge ignition coil system
 - Demonstration: Improved fuel-air-EGR mixer and higher energy DC ignition coil system

- Additional Improvements
 - Continuous flow valve (CFV) for fueling
 - Electronically controlled wastegate
 - Boost recirculation valve

Closed Loop Fueling

Large focus on keeping the engine within closed loop fueling

Low NO_X Demonstration Engine

- Transport and feedback delay minimized
- Accurate measurements of fuel supply, intake and exhaust volume required

sensors

Cold Start Improvements

- Catalyst heating strategy
 - Ignition timing after TDC
 - Slight enrichment
 - EGR use disabled for first
 30 seconds

Emissions difference

- 4x increase in NO_X emissions without catalyst heating
- Increase in cycle work without catalyst heating results in 3.4x increase in BSNO_X

Engine Calibration Improvements

- Long time constant volumetric efficiency (VE) correction
 - Used to correct for cylinder wall temperature:
 - Engine speed & load history
 - Coolant temperature
 - ECU's adaptive table learns hot operation
 - Cold operation has incorrect adjustments and takes too long to update
 - Allows for larger VE correction when engine is cold

Improved Calibration & Hardware Results: FTP & RMC-SET

 Demonstration cold start emissions equivalent to baseline hot start

- Near zero NO_x emissions over the RMC-SET
- Significantly lower NH₃ emissions

CARB Demonstration

Testing performed over the span of a couple weeks

- US certification cycles
 - 5 repeats of cold + 3 hot FTP & RMC-SET
- Non-US certification cycles
 - 3 repeats of cold + 3 hot WHTCs & CARB extended idle
- Low load vocational
 - 3 repeats of NYBC, OCTA, and Cruise-Creep
- Testing performed in compliance with 40 CFR 1065
- Raw and dilute emissions measurements to verify low emissions levels
 - Both raw and dilute measurements required two different gas calibration ranges for cold and hot start
 - Ex. 250 ppm NO_X range for cold-start and 25 ppm NO_X range for hot-start (dilute)

SAE INTERNATIONAL 2017-01-0957

NO_x Emissions: FTP, RMC-SET & WHTC

Certification cycles were the primary focus for calibration efforts

	NO _x Emissions Comparison, g/bhp-hr						
		FTP		DNAC CET	WHTC		
	Cold	Hot	Composite	RMC-SET	Cold	Hot	Composite
Baseline	0.247	0.093	0.115	0.012	0.310	0.308	0.308
Low NO _x Engine	0.065	0.001	0.010	0.001	0.043	0.006	0.011
Reduction	74%	99%	91%	92%	86%	98%	96%

Other Emissions: FTP, RMC-SET & WHTC

GHG emissions and ammonia were of interest

	Other Emissions Comparison					
	Pollutant	FTP	RMC-SET	WHTC		
	CH ₄ , g/bhp-hr	0.96	1.20	1.54		
Baseline	NH ₃ , avg. ppm	76	162	100		
	CO ₂ , g/bhp-hr	542	454	510		
Low NO _x Engine	CH ₄ , g/bhp-hr	0.15	0.92	0.10		
	NH ₃ , avg. ppm	52	37	44		
	CO ₂ , g/bhp-hr	547	445	513		
Reduction	CH ₄ , g/bhp-hr	84%	23%	94%		
	NH ₃ , avg. ppm	32%	77%	56%		
	CO ₂ , g/bhp-hr	-0.9%	2.0%	-0.6%		

Low Load Vocational Cycles

Near zero NO_x emissions with no GHG/fuel penalty over low load

cycles

:3	OCTA Tailpipe Emissions, g/bhp-hr			NYBC Tailpipe Emissions, g/bhp-hr			
	NO_X CO_2 CH_4 NO_X CO_2				CH ₄		
Baseline	0.112	552.8	1.078	0.907	672.4	1.893	
Low NO _x Engine	0.000	552.3	0.039	0.002	667.1	0.421	
Reduction	99.7%	0%	96%	99.8%	1%	78%	

Conclusions

This engine and calibration met the 0.02 g/bhp-hr NO_X emission target

- Required:
 - Close-coupled and underfloor TWC
 - Rapid catalyst heating strategy
 - Improved AFR control
 - Improved EGR tolerance
 - New hardware

	NO _x Emissions Comparison, g/bhp-hr						
		FTP		DNAC CET	WHTC		
	Cold	Hot	Composite	RMC-SET	Cold	Hot	Composite
Baseline	0.247	0.093	0.115	0.012	0.310	0.308	0.308
Low NO _x Engine	0.065	0.001	0.010	0.001	0.043	0.006	0.011
Reduction	74%	99%	91%	92%	86%	98%	96%

SAE INTERNATIONAL 2017-01-0957

Future Work

- Fuel penalty associated with rapid catalyst light-off will need to be addressed
 - Southwest Research Institute has already conducted internal research; results to be released soon
- Further reductions require improved AFR control
 - Oxygen storage model would reduce emissions further
 - NH₃ levels were higher than the 10 ppm target
 - CH₄ emissions above the 0.1 g/bhp-hr cap for Phase 1 and Phase 2 GHG
 Standards
 - RMC-SET with high space velocities may require CH₄ oxidation catalyst
- Small excursions from stoichiometric can result in large NO_X breakthroughs
 - HD-OBD requirements will apply to CNG engines starting 2018 and robust AFR monitoring will be important in ensuring low NO_X emissions in the future

SAE INTERNATIONAL

Acknowledgements

James Chiu

California Environmental Protection Agency

SAE INTERNATIONAL 2017-01-0957

Questions

